Part Number Hot Search : 
HVC355B 2SC3330 B1610 D74LVC ABF10 557E283M T431616D GRM219
Product Description
Full Text Search
 

To Download ADR02 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Ultracompact Precision 10 V/5 V/2.5 V/3.0 V Voltage References
ADR01/ADR02/ADR03/ADR06
FEATURES
Ultracompact SC70-5/TSOT-5 Low temperature coefficient SOIC-8: 3 ppm/C SC70-5/TSOT-5: 9 ppm/C Initial accuracy 0.1% No external capacitor required Low noise 10 V p-p (0.1 Hz to 10 Hz) Wide operating range ADR01: 12 V to 40 V ADR02: 7 V to 40 V ADR03: 4.5 V to 40 V ADR06: 5.0 V to 40 V High output current 10 mA Wide temperature range: -40C to +125C ADR01/ADR02/ADR03 pin compatible to industry-standard REF01/REF02/REF031
PIN CONFIGURATIONS
TEMP 1 GND 2 VIN 3
TOP VIEW 4 VOUT (Not to Scale)
Figure 1. 5-Lead SC70/TSOT Surface-Mount Packages
TP 1 VIN 2 TEMP 3 GND 4
ADR01/ ADR02/ ADR03/ ADR06
8 TP 7 NIC 6 VOUT
NIC = NO INTERNAL CONNECT TP = TEST PIN (DO NOT CONNECT)
Figure 2. 8-Lead SOIC Surface-Mount Package
GENERAL DESCRIPTION
The ADR01, ADR02, ADR03, and ADR06 are precision 10 V, 5 V, 2.5 V, and 3.0 V band gap voltage references featuring high accuracy, high stability, and low power. The parts are housed in tiny SC70-5 and TSOT-5 packages, as well as the SOIC-8 versions. The SOIC-8 versions of the ADR01, ADR02, and ADR03 are drop-in replacements1 to the industry-standard REF01, REF02, and REF03. The small footprint and wide operating range make the ADR0x references ideally suited for general-purpose and space-constraint applications. With an external buffer and a simple resistor network, the TEMP terminal can be used for temperature sensing and approximation. A TRIM terminal is provided on the devices for fine adjustment of the output voltage. The ADR01, ADR02, ADR03, and ADR06 are compact, low drift voltage references that provide an extremely stable output voltage from a wide supply voltage range. They are available in SC70-5, TSOT-5, and SOIC-8 packages with A and B grade selections. All parts are specified over the extended industrial (-40C to +125C) temperature range.
APPLICATIONS
Precision data acquisition systems High resolution converters Industrial process control systems Precision instruments PCMCIA cards
SELECTION GUIDE
Part Number ADR01 ADR02 ADR03 ADR06 Output Voltage 10.0 V 5.0 V 2.5 V 3.0 V
1
ADR01, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for system-level compatibility are implied. SOIC-8 versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with SOIC-8 versions of REF01/REF02/REF03, respectively, with the additional temperature monitoring function.
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. www.analog.com Tel: 781.329.4700 Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved.
02747-F-002
TOP VIEW 5 TRIM (Not to Scale)
02747-F-001
ADR01/ ADR02/ ADR03/ ADR06
5
TRIM
ADR01/ADR02/ADR03/ADR06
TABLE OF CONTENTS
Specifications..................................................................................... 3 ADR01 Electrical Characteristics............................................... 3 ADR02 Electrical Characteristics............................................... 4 ADR03 Electrical Characteristics............................................... 5 ADR06 Electrical Characteristics............................................... 6 Dice Electrical Characteristics.................................................... 7 Absolute Maximum Ratings............................................................ 8 Parameter Definitions ...................................................................... 9 Notes............................................................................................... 9 Typical Performance Characteristics ........................................... 10 Applications..................................................................................... 15 Applying the ADR01/ADR02/ADR03/ADR06...................... 15 Negative Reference..................................................................... 16 Low Cost Current Source.......................................................... 16 Precision Current Source with Adjustable Output ................ 16 Programmable 4 to 20 mA Current Transmitter ................... 17 Outline Dimensions ....................................................................... 18 Ordering Guides ............................................................................. 19 ADR01 Ordering Guide ............................................................ 19 ADR02 Ordering Guide ............................................................ 19 ADR03 Ordering Guide ............................................................ 20 ADR06 Ordering Guide ............................................................ 20
REVISION HISTORY
7/04--Data Sheet Changed from Rev. E to Rev. F Changes to ADR02 Electrical Characteristics, Table 2................ 4 Changes to Ordering Guide .......................................................... 19 2/04--Data Sheet Changed from Rev. D to Rev. E Added C grade ................................................................Universal Changes to Outline Dimensions............................................... 19 Updated Ordering Guide........................................................... 20 8/03--Data Sheet Changed from Rev. C to Rev D Added ADR06 Universal Change to Figure 27 13 6/03--Data Sheet Changed from Rev. B to Rev C Changes to Features Section 1 Changes to General Description Section 1 Changes to Figure 2 1 Changes to Specifications Section 2 Addition of Dice Electrical Characteristics and Layout 6 Changes to Absolute Maximum Ratings Section 7 Updated SOIC (R-8) Outline Dimensions 19 Changes to Ordering Guide 20 2/03--Data Sheet Changed from Rev. A to Rev. B Added ADR03.....................................................................Universal Added TSOT-5 (UJ) Package............................................Universal Updated Outline Dimensions....................................................... 18 12/02--Data Sheet Changed from Rev. 0 to Rev. A Changes to Features Section ........................................................1 Changes to General Description .................................................1 Table I deleted................................................................................1 Changes to ADR01 Specifications ..............................................2 Changes to ADR02 Specifications ..............................................3 Changes to Absolute Maximum Ratings Section .....................4 Changes to Ordering Guide.........................................................4 Updated Outline Dimensions .................................................. 12
Rev. F | Page 2 of 20
ADR01/ADR02/ADR03/ADR06
SPECIFICATIONS
ADR01 ELECTRICAL CHARACTERISTICS
VIN = 12 V to 40 V, TA = 25C, unless otherwise noted. Table 1.
Parameter Output Voltage Initial Accuracy Output Voltage Initial Accuracy Temperature Coefficient Symbol VO VOERR VO VOERR TCVO Conditions A and C grades A and C grades B grade B grade A grade, SOIC-8, -40C < TA < +125C A grade, TSOT-5, -40C < TA < +125C A grade, SC70-5, -40C < TA < +125C B grade, SOIC-8, -40C < TA < +125C B grade, TSOT-5, -40C < TA < +125C B grade, SC70-5, -40C < TA < +125C C grade, SOIC-8, -40C < TA < +125C 2 VIN = 12 V to 40 V, -40C < TA < +125C ILOAD = 0 to 10 mA, -40C < TA < +125C, VIN = 15 V No load, -40C < TA < +125C 0.1 Hz to 10 Hz 1 kHz 1,000 hours fIN = 10 kHz 7 40 0.65 20 510 4 50 70 -75 30 550 1.96 30 70 1 Min 9.990 Typ 10.000 Max 10.010 10 0.1 10.005 5 0.05 10 25 25 3 9 9 40 Unit V mV % V mV % ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C V ppm/V ppm/mA mA V p-p nV/Hz s ppm ppm dB mA mV mV/C
9.995
10.000
3
1
10
Supply Voltage Headroom Line Regulation Load Regulation Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity
VIN - VO VO/VIN VO/ILOAD IIN eN p-p eN tR VO VO_HYS RRR ISC VTEMP TCVTEMP
1
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 3 of 20
ADR01/ADR02/ADR03/ADR06
ADR02 ELECTRICAL CHARACTERISTICS
VIN = 7 V to 40 V, TA = 25C, unless otherwise noted. Table 2.
Parameter Output Voltage Initial Accuracy Output Voltage Initial Accuracy Temperature Coefficient Symbol VO VOERR VO VOERR TCVO Conditions A and C grades A and C grades B grade B grade A grade, SOIC-8, -40C < TA < +125C A grade, TSOT-5, -40C < TA < +125C A grade, SC70-5, -40C < TA < +125C A grade. SC70-5, -55oC < TA < +125oC B grade, SOIC-8, -40C < TA < +125C B grade, TSOT-5, -40C < TA < +125C B grade, SC70-5, -40C < TA < +125C C grade, SOIC-8, -40C < TA < +125C Supply Voltage Headroom Line Regulation Load Regulation VIN - VO VO/VIN VO/ILOAD 2 VIN = 7 V to 40 V, -40C < TA < +125C VIN = 7 V to 40 V, -55C < TA < +125C ILOAD = 0 to 10 mA, -40C < TA < +125C, VIN = 10 V ILOAD = 0 to 10 mA, -55C < TA < +125C, VIN = 10 V No load, -40C < TA < +125C 0.1 Hz to 10 Hz 1 kHz 1,000 hours -55C < TA < +125C fIN = 10 kHz 7 7 40 30 40 70 Min 4.995 Typ 5.000 Max 5.005 5 0.1 5.003 3 0.06 10 25 25 30 3 9 9 40 Unit V mV % V mV % ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C V ppm/V ppm/V ppm/mA
4.997
5.000
3
1
10
Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity
IIN eN p-p eN tR VO VO_HYS RRR ISC VTEMP TCVTEMP
45 0.65 10 230 4 50 70 80 -75 30 550 1.96
80 1
ppm/mA mA V p-p nV/Hz s ppm ppm ppm dB mA mV mV/C
1
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 4 of 20
ADR01/ADR02/ADR03/ADR06
ADR03 ELECTRICAL CHARACTERISTICS
VIN = 4.5 V to 40 V, TA = 25C, unless otherwise noted. Table 3.
Parameter Output Voltage Initial Accuracy Output Voltage Initial Accuracy Temperature Coefficient Symbol VO VOERR VO VOERR TCVO Conditions A and C grades A and C grades B grades B grades A grade, SOIC-8, -40C < TA < +125C A grade, TSOT-5, -40C < TA < +125C A grade, SC70-5, -40C < TA < +125C A grade, SC70-5, -55C < TA < +125C B grade, SOIC-8, -40C < TA < +125C B grade, TSOT-5, -40C < TA < +125C B grade, SC70-5, -40C < TA < +125C C grade, SOIC-8, -40C < TA < +125C 2 VIN = 7.5 V to 40 V, -40C < TA < +125C VIN = 7.5 V to 40 V, -55C < TA < +125C ILOAD = 0 mA to 10 mA, -40C < TA < +125C, VIN = 7.0 V ILOAD = 0 mA to 10 mA, -55C < TA < +125C, VIN = 7.0 V No load, -40C < TA < +125C 0.1 Hz to 10 Hz 1 kHz 1,000 hours -55C < TA < +125C fIN = 10 kHz 7 7 25 45 0.65 6 230 4 50 70 80 -75 30 550 1.96 30 40 70 80 1 Min 2.495 Typ 2.500 Max 2.505 5 0.2 2.5025 2.5 0.1 10 25 25 30 3 9 9 40 Unit V mV % V mV % ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C V ppm/V ppm/V ppm/mA ppm/mA mA V p-p nV/Hz s ppm ppm ppm dB mA mV mV/C
2.4975
2.5000
3
1
10
Supply Voltage Headroom Line Regulation Load Regulation
VIN - VO VO/VIN VO/ILOAD
Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output at TEMP Pin Temperature Sensitivity
IIN eN p-p eN tR VO VO_HYS RRR ISC VTEMP TCVTEMP
1
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 5 of 20
ADR01/ADR02/ADR03/ADR06
ADR06 ELECTRICAL CHARACTERISTICS
VIN = 5.0 V to 40 V, TA = 25C, unless otherwise noted. Table 4.
Parameter Output Voltage Initial Accuracy Output Voltage Initial Accuracy Temperature Coefficient Symbol VO VOERR VO VOERR TCVO Conditions A and C grades A and C grades B grade B grade A grade, SOIC-8, -40C < TA < +125C A grade, TSOT-5, -40C < TA < +125C A grade, SC70-5, -40C < TA < +125C B grade, SOIC-8, -40C < TA < +125C B grade, TSOT-5, -40C < TA < +125C B grade, SC70-5, -40C < TA < +125C C grade, SOIC-8, -40C < TA < +125C 2 VIN = 15 V to 40 V, -40C < TA < +125C ILOAD = 0 to 10 mA, -40C < TA < +125C, VIN = 7.0 V No load, -40C < TA < +125C 0.1 Hz to 10 Hz 1 kHz 1,000 hours fIN = 10 kHz 7 40 0.65 10 510 4 50 70 -75 30 550 1.96 30 70 1 Min 2.994 Typ 3.000 Max 3.006 6 0.2 3.003 3 0.1 10 25 25 3 9 9 40 Unit V mV % V mV % ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C ppm/C V ppm/V ppm/mA mA V p-p nV/Hz s ppm ppm dB mA mV mV/C
2.997
3.000
3
1
10
Supply Voltage Headroom Line Regulation Load Regulation Quiescent Current Voltage Noise Voltage Noise Density Turn-On Settling Time Long-Term Stability1 Output Voltage Hysteresis Ripple Rejection Ratio Short Circuit to GND Voltage Output AT TEMP Pin Temperature Sensitivity
VIN - VO VO/VIN VO/ILOAD IIN eN p-p eN tR VO VO_HYS RRR ISC VTEMP TCVTEMP
1
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 6 of 20
ADR01/ADR02/ADR03/ADR06
DICE ELECTRICAL CHARACTERISTICS
VIN = up to 40 V, TA = 25C, unless otherwise noted. Table 5.
Parameter Output Voltage ADR01NBC ADR02NBC Temperature Coefficient Line Regulation ADR01NBC ADR02NBC Load Regulation Quiescent Current Voltage Noise Symbol VO VO TCVO VO/VIN VO/VIN VO/ILOAD IIN eN p-p Conditions 25C 25C -40C < TA < +125C VIN = 15 V to 40 V VIN = 7 V to 40 V ILOAD = 0 to 10 mA No load 0.1 Hz to 10 Hz
TEMP VIN
Min 9.995 4.997
Typ 10.004 5.002 10 7 7 40 0.65 25
Max 10.005 5.003
Unit V V ppm/C ppm/V ppm/V ppm/mA mA V p-p
GND
TRIM
02747-F-003
VOUT (SENSE) DIE SIZE: 0.83mm x 1.01mm
VOUT (FORCE)
Figure 3. Die Layout
Rev. F | Page 7 of 20
ADR01/ADR02/ADR03/ADR06
ABSOLUTE MAXIMUM RATINGS
Ratings at 25C, unless otherwise noted. Table 6.
Parameter Supply Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range: KS, UJ, and R Packages Lead Temperature Range (Soldering, 60 Sec) Rating 40 V Indefinite -65C to +150C -40C to +125C -65C to +150C 300C
Table 7. Thermal Resistance
Package Type SC70-5 (KS-5) TSOT-5 (UJ-5) SOIC-8 (R-8) JA1 376 230 130 JC 189 146 43 Unit C/W C/W C/W
1
JA is specified for the worst-case conditions, that is, JA is specified for devices soldered in circuit boards for surface-mount packages.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these products feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. F | Page 8 of 20
ADR01/ADR02/ADR03/ADR06
PARAMETER DEFINITIONS
Temperature Coefficient
The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25C. This parameter is expressed in ppm/C and can be determined by the following equation:
TCVO [ ppm / C ] = VO (T2 ) - VO (T1 ) x 10 6 VO ( 25C ) x T2 - T1
Thermal Hysteresis
Defined as the change of output voltage after the device is cycled through temperature from +25C to -40C to +125C and back to +25C. This is a typical value from a sample of parts put through such a cycle.
VO _ HYS = VO ( 25C ) - VO _ TC
where: VO(25C) = VO at 25C VO(T1) = VO at Temperature 1 VO(T2) = VO at Temperature 2
VO _ HYS [ ppm ] =
VO ( 25C ) - VO _ TC VO ( 25C )
x 10 6
Line Regulation
The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input voltage.
where: VO(25C) = VO at 25C VO_TC = VO at 25C after temperature cycle at +25C to -40C to +125C and back to +25C
NOTES
Input Capacitor
Input capacitors are not required on the ADR01/ADR02/ ADR03/ADR06. There is no limit for the value of the capacitor used on the input, but a 1 F to 10 F capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 F in parallel also helps to reduce noise from the supply.
Load Regulation
The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance.
Output Capacitor
The ADR01/ADR02/ADR03/ADR06 do not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 F, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can be improved with an additional 1 F to 10 F output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen.
Long-Term Stability
Typical shift of output voltage at 25C on a sample of parts subjected to a test of 1,000 hours at 25C:
VO = VO (t0 ) - VO (t1 )
VO [ ppm] = VO (t0 ) - VO (t1 ) x 10 6 VO (t0 )
where: VO(t0) = VO at 25C at Time 0 VO(t1) = VO at 25C after 100 hours of operation at 25C The majority of the shift is seen in the first 200 hours, and, as time goes by, the drift decreases significantly. So for the subsequent 1,000 hours' time points, this drift is much smaller than the first.
Rev. F | Page 9 of 20
ADR01/ADR02/ADR03/ADR06
TYPICAL PERFORMANCE CHARACTERISTICS
10.010
3.002
10.005
3.001
VOUT (V)
VOUT (V)
10.000
3.000
9.995
2.999
9.990
02747-F-004
-25
-10
5
20
35
50
65
o
80
95
110
125
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE ( C)
TEMPERATURE (oC)
Figure 4. ADR01 Typical Output Voltage vs. Temperature
Figure 7. ADR06 Typical Output Voltage vs. Temperature
5.008
0.8
SUPPLY CURRENT (mA)
5.004
0.7 +125 C
o
VOUT (V)
5.000
0.6
+25oC -40oC
4.996
0.5
02747-F-005
-25
-10
5
20
35
50
65
80
95
110
125
12
16
20
TEMPERATURE (oC)
24 28 32 INPUT VOLTAGE (V)
36
40
Figure 5. ADR02 Typical Output Voltage vs. Temperature
Figure 8. ADR01 Supply Current vs. Input Voltage
2.502
0.8
2.501
INPUT CURRENT (mA)
0.7
+125oC
VOUT (V)
+25oC 0.6 -40 C
o
2.500
2.499
0.5
02747-F-006
-25
-10
5
20
35
50
65
80
95
110
125
8
12
16
20
24
28
32
36
40
TEMPERATURE (oC)
INPUT VOLTAGE (V)
Figure 6. ADR03 Typical Output Voltage vs. Temperature
Figure 9. ADR02 Supply Current vs. Input Voltage
Rev. F | Page 10 of 20
02747-F-009
2.498 -40
0.4
02747-F-008
4.992 -40
0.4
02747-F-007
9.985 -40
2.998 -40
ADR01/ADR02/ADR03/ADR06
0.85 0.80 0.75
SUPPLY CURRENT (mA)
50 IL = 0mA TO 5mA 40
LOAD REGULATION (ppm/mA)
30 VIN = 40V 20 10 0 VIN = 8V
0.70 0.65 0.60 0.55 0.50 0.45
02747-F-010
+125 C
o
+25 C -40oC
o
-10
5
10
15
20
25
30
35
40
-40
0
25 TEMPERATURE (oC)
85
125
INPUT VOLTAGE (V)
Figure 10. ADR03 Supply Current vs. Input Voltage
Figure 13. ADR02 Load Regulation vs. Temperature
0.80 0.75
60 IL = 0mA TO 10mA 50
LOAD REGULATION (ppm/mA)
SUPPLY CURRENT (mA)
0.70 +125 C 0.65 +25oC 0.60 0.55 0.50 0.45
02747-F-011
o
VIN = 7V 40 VIN = 40V 30
-40 C
o
20
10
5
10
15
20
25
30
35
40
-10
5
20
35
50
65
o
80
95
110
125
INPUT VOLTAGE (V)
TEMPERATURE ( C)
Figure 11. ADR06 Supply Current vs. Input Voltage
Figure 14. ADR03 Load Regulation vs. Temperature
40 IL = 0mA TO 10mA 30
40 IL = 0mA TO 10mA 30
LOAD REGULATION (ppm/mA)
LOAD REGULATION (ppm/mA)
VIN = 40V 20 10 0 VIN = 14V -10 -20 -30
02747-F-012
VIN = 40V 20
10
0 VIN = 7V -10
-20
0
25
50
o
85
125
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE ( C)
TEMPERATURE (oC)
Figure 12. ADR01 Load Regulation vs. Temperature
Figure 15. ADR06 Load Regulation vs. Temperature
Rev. F | Page 11 of 20
02747-F-015
-40 -40
-30 -40 -25
02747-F-014
0.40
0 -40 -25
02747-F-013
0.40
-20
ADR01/ADR02/ADR03/ADR06
2 VIN = 14V TO 40V 0
8
LINE REGULATION (ppm/V)
10 VIN = 6V TO 40V
LINE REGULATION (ppm/V)
6 4 2 0
-2 -4 -40
-2
-4
-6
-8
02747-F-016
-25
-10
5
20
35
50
65
o
80
95
110
125
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE ( C)
TEMPERATURE (oC)
Figure 16. ADR01 Line Regulation vs. Temperature
Figure 19. ADR06 Line Regulation vs. Temperature
8 VIN = 8V TO 40V
5
4
DIFFERENTIAL VOLTAGE ( V)
LINE REGULATION (ppm/V)
4
3 +125oC 2
0
-40 C
o
-4
1
+25 C
o
02747-F-017
-10
5
20
35
50
65
o
80
95
110
125
0
2
4
6
8
10
TEMPERATURE ( C)
LOAD CURRENT (mA)
Figure 17. ADR02 Line Regulation vs. Temperature
Figure 20. ADR01 Minimum Input-Output Voltage Differential vs. Load Current
4 VIN = 5V TO 40V
8
LINE REGULATION (ppm/mV)
2
DIFFERENTIAL VOLTAGE (V)
4 +125oC -40oC 2
0
-2
+25 C
o
-25
-10
5
20
35
50
65
o
80
95
110
125
0
2
4
6
8
10
TEMPERATURE ( C)
LOAD CURRENT (mA)
Figure 18. ADR03 Line Regulation vs. Temperature
Figure 21. ADR02 Minimum Input-Output Voltage Differential vs. Load Current
Rev. F | Page 12 of 20
02747-F-021
02747-F-018
-4 -40
0
02747-F-020
-8 -40 -25
0
02747-F-019
-10 -40
ADR01/ADR02/ADR03/ADR06
6
5
DIFFERENTIAL VOLTAGE ( V)
4 +125oC +25oC 2 -40 C
o
3
1
02747-F-022
0
2
4
6
8
10
TIME (1s/DIV)
LOAD CURRENT (mA)
Figure 22. ADR03 Minimum Input-Output Voltage Differential vs. Load Current
Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10 Hz
4.5 4.0
DIFFERENTIAL VOLTAGE ( V)
3.5 3.0 2.5 2.0 1.5 1.0 0.5
02747-F-023
+125oC
+25oC
-40oC
50V/DIV
0
0
2
4
6
8
10
TIME (1ms/DIV)
LOAD CURRENT (mA)
Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 KHz Figure 23. ADR06 Minimum Input-Output Voltage Differential vs. Load Current
0.70 TA = 25 C
o
10V 8V
QUIESCENT CURRENT (mA)
0.65
VOUT 5V/DIV
0.60
0.55
NO LOAD CAPACITOR NO INPUT CAPACITOR
02747-F-024
0
2
4
6
8
10
TIME (2.00ms/DIV)
LOAD CURRENT (mA)
Figure 24. ADR01 Quiescent Current vs. Load Current
Figure 27. ADR02 Line Transient Response
Rev. F | Page 13 of 20
02747-F-027
0.50
02747-F-026
02747-F-025
0
1V/DIV
ADR01/ADR02/ADR03/ADR06
NO LOAD CAPACITOR VIN 5V/DIV CIN = 0.01F NO LOAD CAPACITOR VIN 10V/DIV
LOAD OFF
LOAD ON
VOUT 100mV/DIV VOUT 5V/DIV
LOAD = 5mA
02747-F-028
TIME (1.00ms/DIV)
TIME (4s/DIV)
Figure 28. ADR02 Load Transient Response
Figure 31. ADR02 Turn-On Response
CLOAD = 100nF VIN 5V/DIV
CL = 0.01F NO INPUT CAPACITOR VIN 10V/DIV
LOAD OFF
LOAD ON
VOUT 100mV/DIV
VOUT 5V/DIV
LOAD = 5mA TIME (1.00ms/DIV)
02747-F-029
TIME (4s/DIV)
Figure 29. ADR02 Load Transient Response
Figure 32. ADR02 Turn-Off Response
VIN 10V/DIV
VIN 10V/DIV
CIN = 0.01F NO LOAD CAPACITOR
CL = 0.01F NO INPUT CAPACITOR
VOUT 5V/DIV
VOUT 5V/DIV
TIME (4s/DIV)
02747-F-030
TIME (4s/DIV)
Figure 30. ADR02 Turn-Off Response
Figure 33. ADR02 Turn-On Response
Rev. F | Page 14 of 20
02747-F-033
02747-F-032
02747-F-031
ADR01/ADR02/ADR03/ADR06
APPLICATIONS
The ADR01/ADR02/ADR03/ADR06 are high precision, low drift 10 V, 5 V, 2.5 V, and 3.0 V voltage references available in an ultracompact footprint. The SOIC-8 version of the devices is a drop-in replacement of the REF01/REF02/ REF03 sockets with improved cost and performance. These devices are standard band gap references. The band gap cell contains two NPN transistors (Q18 and Q19) that differ in emitter area by 2x. The difference in their VBE produces a proportional-to-absolute temperature current (PTAT) in R14, and, when combined with the VBE of Q19, produces a band gap voltage, VBG, that is almost constant in temperature. With an internal op amp and the feedback network of R5 and R6, VO is set precisely at 10 V, 5 V, 2.5 V, and 3.0 V for the ADR01, ADR02, ADR06, and ADR03, respectively. Precision laser trimming of the resistors and other proprietary circuit techniques are used to further enhance the initial accuracy, temperature curvature, and drift performance of the ADR01/ADR02/ADR03/ADR06.
VIN R1 Q1 R2 Q2 Q3 R3 Q23 Q7 Q8 Q9 D1 D2 Q4 VO D3 R12 R13 Q12 Q13 I1 C1 R5 Q10 R4
to the input and output pins of the device. An optional 1 F to 10 F bypass capacitor can also be applied at the VIN node to maintain the input under transient disturbance.
U1
ADR01/ ADR02/ ADR03/ ADR06
VIN C1 0.1F VIN VOUT VO
02747-F-035
TEMP TRIM GND
C2 0.1F
Figure 35. Basic Configuration
Output Adjustment
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than 10 V/5 V/2.5 V/3.0 V. For finer adjustment, a series resistor of 470 k can be added. With the configuration shown in Figure 36, the ADR01 can be adjusted from 9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to 5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the output does not significantly affect the temperature performance of the device, provided the temperature coefficients of the resistors are relatively low.
U1
VIN
Q14 Q15 2X Q18 R27 TEMP R14 R32 R24 R17 R11 R41 R42 GND 1X Q19 Q16 Q20 Q17 R6
02747-F-034
ADR01/ ADR02/ ADR03/ ADR06
VIN VOUT R1 470k VO pot 10k TEMP TRIM GND
VBG
R20 TRIM
Figure 36. Optional Trim Adjustment
Temperature Monitoring
As described previously, the ADR01/ADR02/ADR03/ADR06 provide a TEMP output (Pin 3) that varies linearly with temperature. This output can be used to monitor the temperature change in the system. The voltage at VTEMP is approximately 550 mV at 25C, and the temperature coefficient is approximately 1.96 mV/C (see Figure 37). A voltage change of 39.2 mV at the TEMP pin corresponds to a 20C change in temperature.
Figure 34. Simplified Schematic Diagram
The PTAT voltage is made available at the TEMP pin of the ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/C temperature coefficient, such that users can estimate the temperature change of the device by knowing the voltage change at the TEMP pin.
APPLYING THE ADR01/ADR02/ADR03/ADR06
The devices can be used without any external components to achieve the specified performance. Because of the internal op amp amplifying the band gap cell to 10 V/5 V/2.5 V/3.0 V, power supply decoupling helps the transient response of the ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 F ceramic type decoupling capacitor should be applied as close as possible
Rev. F | Page 15 of 20
02747-F-036
R2 1k
ADR01/ADR02/ADR03/ADR06
0.80 0.75 0.70 0.65
VIN = 15V SAMPLE SIZE = 5
LOW COST CURRENT SOURCE
Unlike most references, the ADR01/ADR02/ADR03/ADR06 employ an NPN Darlington in which the quiescent current remains constant with respect to the load current, as shown in Figure 24. As a result, a current source can be configured as shown in Figure 40 where ISET = (VOUT - VL)/RSET. IL is simply the sum of ISET and IQ. Although simple, IQ varies typically from 0.55 to 0.65 mA, limiting this circuit to general-purpose applications.
VIN IIN
VTEMP (V)
0.60
VTEMP /T 1.96mV/ C
o
0.55 0.50 0.45
02747-F-037
0.40 -50
-25
0
25
50
o
75
100
125
TEMPERATURE ( C)
Figure 37. Voltage at TEMP Pin vs. Temperature
The TEMP function is provided as a convenience rather than a precise feature. Because the voltage at the TEMP node is acquired from the band gap core, current pulling from this pin has a significant effect on VOUT. Care must be taken to buffer the TEMP output with a suitable low bias current op amp, such as the AD8601, AD820, or OP1177, all of which would result in less than a 100 V change in VOUT (see Figure 38). Without buffering, even tens of microamps drawn from the TEMP pin can cause VOUT to fall out of specification.
U1
ADR01/ ADR02/ ADR03/ ADR06
GND
VOUT RSET ISET = 10V/RSET
VL IQ 0.6mA
02747-F-040
RL
IL = ISET + IQ
Figure 40. Low Cost Current Source
15V
VIN V+
ADR01/ ADR02/ ADR03/ ADR06
VIN VOUT VO
PRECISION CURRENT SOURCE WITH ADJUSTABLE OUTPUT
A precision current source, on the other hand, can be implemented with the circuit shown in Figure 41. By adding a mechanical or digital potentiometer, this circuit becomes an adjustable current source. If a digital potentiometer is used, the load current is simply the voltage across terminals B to W of the digital potentiometer divided by RSET.
IL =
V REF x D R SET
VTEMP 1.9mV/ oC
OP1177
U2
V-
TEMP TRIM GND
02747-F-038
Figure 38. Temperature Monitoring
(1)
NEGATIVE REFERENCE
Without using any matching resistors, a negative reference can be configured as shown in Figure 39. For the ADR01, the voltage difference between VOUT and GND is 10 V. Because VOUT is at virtual ground, U2 closes the loop by forcing the GND pin to be the negative reference node. U2 should be a precision op amp with a low offset voltage characteristic.
U1
where D is the decimal equivalent of the digital potentiometer input code.
U1
ADR01/ ADR02/ ADR03/ ADR06
+12V
0V TO (5V + VL)
VIN
VOUT
B AD5201
100k A
ADR01/ ADR02/ ADR03/ ADR06
5V TO 15V
TEMP TRIM GND
W
+12V U2
V+
RSET
1k
VIN
VOUT
TEMP TRIM GND
+15V
-5V TO VL
OP1177
V- RL VL 1k IL
02747-F-041
U2
V+ -VREF
-12V
OP1177
V-
02747-F-039
Figure 41. Programmable 0 to 5 mA Current Source
-15V
Figure 39. Negative Reference
Rev. F | Page 16 of 20
ADR01/ADR02/ADR03/ADR06
To optimize the resolution of this circuit, dual-supply op amps should be used because the ground potential of ADR02 can swing from -5 V at zero scale to VL at full scale of the potentiometer setting. latter is true, oscillation may occur. For this reason, a capacitor, C1, in the range of 1 pF to 10 pF should be connected between VP and the output terminal of U4, to filter any oscillation.
ZO = Vt R1 = I t R1 R2 - 1 R1R2
PROGRAMMABLE 4 TO 20 mA CURRENT TRANSMITTER
Because of their precision, adequate current handling, and small footprint, the devices are suitable as the reference sources for many high performance converter circuits. One of these applications is the multichannel 16-bit 4 to 20 mA current transmitter in the industrial control market (see Figure 42). This circuit employs a Howland current pump at the output, which yields better efficiency, a lower component count, and a higher voltage compliance than the conventional design with op amps and MOSFETs. In this circuit, if the resistors are matched such that R1 = R1, R2 = R2, R3 = R3, the load current is
(3)
In this circuit, an ADR01 provides the stable 10.000 V reference for the AD5544 quad 16-bit DAC. The resolution of the adjustable current is 0.3 A/step, and the total worst-case INL error is merely 4 LSB. Such error is equivalent to 1.2 A or a 0.006% system error, which is well below most systems' requirements. The result is shown in Figure 43 with measurement taken at 25C and 70C; total system error of 4 LSB at both 25C and 70C.
5 RL = 500 IL = 0mA TO 20mA 4
(R2 + R3) R1 VREF x D IL = x 2N R3
where D is similarly the decimal equivalent of the DAC input code and N is the number of bits of the DAC. According to Equation 2, R3 can be used to set the sensitivity. R3 can be made as small as necessary to achieve the current needed within U4 output current driving capability. On the other hand, other resistors can be kept high to conserve power.
0V TO -10V 5V U1 15V VIN VOUT U2 VDD RF +15V IO U3
(2)
3
INL (LSB)
2 70 C 1
o
25oC
0
0
8192
16384
24576 32768 40960 CODE (Decimal)
49152 57344 65536
TEMP TRIM GND
10V V REF AD5544 IO GND
R1 150k VP
R2 15k R3 50
Figure 43. Result of Programmable 4 to 20 mA Current Transmitter
VX
-15V
C1 10pF
Precision Boosted Output Regulator
A precision voltage output with boosted current capability can be realized with the circuit shown in Figure 44. In this circuit, U2 forces VO to be equal to VREF by regulating the turn-on of N1, thereby making the load current furnished by VIN. In this configuration, a 50 mA load is achievable at VIN of 15 V. Moderate heat is generated on the MOSFET, and higher current can be achieved with a replacement of a larger device. In addition, for a heavy capacitive load with a fast edging input signal, a buffer should be added at the output to enhance the transient response.
N1 VIN VO
DIGITAL INPUT CODE 20%-100% FULL SCALE
AD8512
U4
VO R3' 50 VL
02747-F-042
R2' 15k U1 = ADR01/ADR02/ADR03/ADR06, REF01 U2 = AD5543/AD5544/AD5554 U3, U4 = AD8512 R1' 150k VN LOAD 500 4-20mA
Figure 42. Programmable 4 to 20 mA Transmitter
In this circuit, the AD8512 is capable of delivering 20 mA of current, and the voltage compliance approaches 15 V. The Howland current pump yields a potentially infinite output impedance, which is highly desirable, but resistance matching is critical in this application. The output impedance can be determined using Equation 3. As can be seen by this equation, if the resistors are perfectly matched, ZO is infinite. On the other hand, if they are not matched, ZO is either positive or negative. If the
U1
ADR01/ ADR02/ ADR03/ ADR06
VIN VOUT TEMP TRIM GND
2N7002 15V
RL 200
CL 1F
V+
OP1177
U2
02747-F-044
V-
Figure 44. Precision Boosted Output Regulator
Rev. F | Page 17 of 20
02747-F-043
-1
ADR01/ADR02/ADR03/ADR06
OUTLINE DIMENSIONS
2.00 BSC
4
1.25 BSC
2.10 BSC
PIN 1 1.00 0.90 0.70 0.65 BSC 1.10 MAX 0.22 0.08 0.30 0.15 0.10 COPLANARITY COMPLIANT TO JEDEC STANDARDS MO-203AA SEATING PLANE
0.10 MAX
0.46 0.36 0.26
Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters
2.90 BSC
5
4
1.60 BSC
1 2 3
2.80 BSC
PIN 1 0.95 BSC 0.90 0.87 0.84 1.90 BSC
1.00 MAX 8 4 0.20 0.08
0.10 MAX
0.50 0.30
SEATING PLANE
0.60 0.45 0.30
COMPLIANT TO JEDEC STANDARDS MO-193AB
Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters
5.00 (0.1968) 4.80 (0.1890)
8 5 4
4.00 (0.1574) 3.80 (0.1497) 1
6.20 (0.2440) 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040)
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) x 45 0.25 (0.0099)
0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE
8 0.25 (0.0098) 0 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 47. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
Rev. F | Page 18 of 20
ADR01/ADR02/ADR03/ADR06
ORDERING GUIDES
ADR01 ORDERING GUIDE
Model ADR01AR ADR01AR-REEL7 ADR01BR ADR01BR-REEL7 ADR01AUJ-REEL7 ADR01AUJ-R2 ADR01BUJ-REEL7 ADR01BUJ-R2 ADR01AKS-REEL7 ADR01AKS-R2 ADR01BKS-REEL7 ADR01BKS-R2 ADR01CRZ2 ADR01CRZ-REEL2 ARR01NBC Output Voltage VO (V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Initial Accuracy (mV) (%) 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 5 0.05 10 0.1 10 0.1 5 0.05 Temperature Coefficient (ppm/C) 10 10 3 3 25 25 9 9 25 25 9 9 40 40 10 (Typ) Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Dice Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR01 ADR01 ADR01 ADR01 R8A R8A R8B R8B R8A R8A R8B R8B ADR01 ADR01 Number of Parts per Reel/Tray 98 1,000 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 98 2,500 360 Temperature Range (C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125
1 2
First line shows part number ADR01; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part.
ADR02 ORDERING GUIDE
Model ADR02AR ADR02AR-REEL ADR02AR-REEL7 ADR02ARZ2 ADR02ARZ-REEL2 ADR02BR ADR02BR-REEL7 ADR02AUJ-REEL7 ADR02AUJ-R2 ADR02BUJ-REEL7 ADR02BUJ-R2 ADR02AKS-REEL7 ADR02AKS-R2 ADR02BKS-REEL7 ADR02BKS-R2 ADR02CRZ2 ADR02CRZ-REEL2 ARR02NBC Output Voltage VO (V) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5.0 5.0 5 Initial Accuracy (mV) (%) 5 0.1 5 0.1 5 0.1 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 3 0.06 5 0.1 5 0.1 3 0.06 Temperature Coefficient (ppm/C) 10 10 10 10 10 3 3 25 25 9 9 25 25 9 9 40 40 10 (Typ) Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Dice Package Option R-8 R-8 R-8 R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR02 ADR02 ADR02 ADR02 ADR02 ADR02 ADR02 R9A R9A R9B R9B R9A R9A R9B R9B ADR02 ADR02 Number of Parts per Reel/Tray 98 1,000 1,000 98 2,500 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 98 2500 360 Temperature Range (C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125
1 2
First line shows part number ADR02; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part.
Rev. F | Page 19 of 20
ADR01/ADR02/ADR03/ADR06
ADR03 ORDERING GUIDE
Model ADR03AR ADR03AR-REEL7 ADR03BR ADR03BR-REEL7 ADR03AUJ-REEL7 ADR03AUJ-R2 ADR03BUJ-REEL7 ADR03BUJ-R2 ADR03AKS-REEL7 ADR03AKS-R2 ADR03BKS-REEL7 ADR03BKS-R2 ADR03BKSZ-REEL72 ADR03CRZ2 ADR03CRZ-REEL2 Output Voltage VO (V) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Initial Accuracy (mV) (%) 5 0.2 5 0.2 2.5 0.1 2.5 0.1 5 0.2 5 0.2 2.5 0.1 2.5 0.1 5 0.2 5 0.2 2.5 0.1 2.5 0.1 2.5 0.1 5 0.1 5 0.1 Temperature Coefficient (ppm/C) 10 10 3 3 25 25 9 9 25 25 9 9 9 40 40 Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR03 ADR03 ADR03 ADR03 RFA RFA RFB RFB RFA RFA RFB RFB RFB ADR02 ADR02 Number of Parts per Reel/Tray 98 1,000 98 1,000 3,000 250 3,000 250 3,000 250 3,000 250 3,000 98 2500 Temperature Range (C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125
1 2
First line shows part number ADR03; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part.
ADR06 ORDERING GUIDE
Model ADR06AR ADR06AR-REEL7 ADR06BR ADR06BR-REEL7 ADR06AUJ-R2 ADR06AUJ-REEL7 ADR06BUJ-R2 ADR06BUJ-REEL7 ADR06AKS-R2 ADR06AKS-REEL7 ADR06BKS-R2 ADR06BKS-REEL7 ADR06CRZ2 ADR06CRZ-REEL2 Output Voltage VO (V) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Initial Accuracy (mV) (%) 6 0.2 3 0.2 6 01 3 0.1 6 0.2 6 0.2 3 0.1 3 0.1 6 0.2 6 0.2 3 0.1 3 0.1 6 0.2 6 0.2 Temperature Coefficient (ppm/C) 10 10 3 3 25 25 9 9 25 25 9 9 40 40 Package Description SOIC-8 SOIC-8 SOIC-8 SOIC-8 TSOT-23-5 TSOT-23-5 TSOT-23-5 TSOT-23-5 SC70 SC70 SC70 SC70 SOIC-8 SOIC-8 Package Option R-8 R-8 R-8 R-8 UJ-5 UJ-5 UJ-5 UJ-5 KS-5 KS-5 KS-5 KS-5 R-8 R-8 Top Mark1 ADR06 ADR06 ADR06 ADR06 RWA RWA RWB RWB RWA RWA RWB RWB ADR06 ADR06 Number of Parts per Reel/Tray 98 1,000 98 1,000 250 3,000 250 3,000 250 3,000 250 3,000 98 2500 Temperature Range (C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125
1 2
First line shows part number ADR06; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number. Z = Pb-free part.
(c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02747-0-7/04(F)
Rev. F | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of ADR02

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X